Lattice of Three-Valued Literal Paralogics Alexander S. Karpenko, Institute of Philosophy of RAS as.karpenko@gmail.com Natalya E. Tomova, Institute of Philosophy of RAS natalya-tomova@yandex.ru

Let V_3 be a set of truth values $\{0, 1/2, 1\}$ and *D* be a set of designated values. Implication is called *natural* if it satisfies the following properties:

- (1) C-extending, i.e. restrictions to the subset $\{0,1\}$ of V_3 coincide with the classical implication;
- If p → q ∈ D and p ∈ D, then q ∈ D, i.e. the matrices for implication need to be normal in the sense of Łukasiewicz-Tarski (condition sufficient for the verification of *modus ponens*);
- (3) Let $p \leq q$, then $p \rightarrow q \in D$;
- (4) $p \rightarrow q \in V_3$, in other cases.

In [9] it is shown that in the class of three-valued logics there are only 3 *natural* implications, that are the extensions of weak Kleene logic \mathbf{K}_3^w with connectives $\{\sim, \cap, \cup\}$ [4] and which generate 3 logics, which are functionally equivalent to the Bochvar's logic of nonsense **B**₃. Let's define the tables for these implications and involution \sim :

	\sim	\rightarrow_1	1	1/2	0	\rightarrow_2	1	1/2	0	\rightarrow_3	1	1/2	0
1	0	1	1	1	0	1	1	0	0	1	1	0	0
1/2	1/2	1/2	1	1	0	1/2	1	1	1	1/2	1	1	0
0	1	0	1	1	1	0							

Let's consider the following matrices:

$$\mathfrak{M}_{1} = \langle \{0, \frac{1}{2}, 1\}, \sim, \rightarrow_{1}, \{1, \frac{1}{2}\} \rangle,$$

$$\mathfrak{M}_{2} = \langle \{0, \frac{1}{2}, 1\}, \sim, \rightarrow_{2}, \{1\} \rangle,$$

$$\mathfrak{M}_{3} = \langle \{0, \frac{1}{2}, 1\}, \sim, \rightarrow_{3}, \{1\} \rangle.$$

Matrice \mathfrak{M}_1 is the characteristic matrix for *paraconsistent* logic \mathbf{P}_2^1 and matrice \mathfrak{M}_2 is the characteristic matrix for *paracomplete* logic \mathbf{I}_2^1 . Note, that \mathbf{P}_2^1 is the extension of paraconsistent logic \mathbf{P}^1 [6] by adding \sim , and \mathbf{I}_2^1 is the extension of paracomplete logic \mathbf{I}^1 [7], which was constructed as dual for \mathbf{P}^1 . Hilbert-style axiomatic systems for all these four logics are given in [5]. Notice, that logics \mathbf{P}^1 and \mathbf{I}^1 are a combination of two three-valued isomorphs of \mathbf{C}_2 [2].

Matrice \mathfrak{M}_3 , whether, $D = \{1\}$, or $D = \{1, 1/2\}$, defines *paranormal* logic **TK**¹, i.e. logic, which is paraconsistent and paracomplete.

Notice, that in definition of *natural* implication we used the *strong* formulation of *modus ponens* rule, asserting preserving of designated truth-values:

$$(i) \forall \mathfrak{M} \forall v [(|A|_v^{\mathfrak{M}} \in D \& |A \to B|_v^{\mathfrak{M}} \in D) \Rightarrow (|B|_v^{\mathfrak{M}} \in D)],$$

where $|A|_v^{\mathfrak{M}}$ is a valuation v of some formula A in matrix \mathfrak{M} .

But if we accept the *weak* formulation of *modus ponens* rule, asserting preserving tautologies:

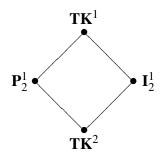
$$(ii) \forall \mathfrak{M} [\forall v (|A|_v^{\mathfrak{M}} \in D) \& \forall v (|A \to B|_v^{\mathfrak{M}} \in D) \Rightarrow \forall v (|B|_v^{\mathfrak{M}} \in D)],$$

then the class of Bochvar's logics is complimented by one more logic, this time with implication \rightarrow_4 (see [10, p. 123], there it is a logic with implication \rightarrow_{29}), which is defined as follows:

$$x \to_4 y = \begin{cases} 0, \text{ if } x = 1 \text{ and } y = 0, \\ 1, \text{ otherwise.} \end{cases}$$

Note, that in [3, p. 27] Bochvarian's implications are lattice ordered with respect to the property of *strong / weak* modus ponens and the set of designated values $\{1\}/\{1, 1/2\}$.

Let's consider the matrix $\mathfrak{M}_4 = \langle \{0, 1/2, 1\}, \sim, \rightarrow_4, \{1, 1/2\} \rangle$, which characterizes the logic **TK**², dual to **TK**¹, because **TK**² is neither paraconsistent nor paracomplete. This allows us to construct a lattice of logics (denoted by *TK*), with respect to the possession of one of the *paraproperties*:



THEOREM 1. Logics \mathbf{P}_2^1 , \mathbf{I}_2^1 , \mathbf{TK}^1 and \mathbf{TK}^2 are pairwise fuctionally equivalent.

THEOREM 2. Let \mathbf{B}_1^{\sim} be the class of all external formulas (i.e. the only possible values of these formulas are 1 or 0) of three-valued Bochvar's logic \mathbf{B}_3 . Let this class be defined by the Peirce's arrow γ [8] and extended by the connective \sim . Then logic \mathbf{I}_2^1 with connectives $\{\sim, \rightarrow_2\}$ and logic \mathbf{B}_1^{\sim} with connectives $\{\sim, \gamma\}$ are fuctionally equivalent.

COROLLARY 1. Logics \mathbf{P}_2^1 , \mathbf{I}_2^1 , \mathbf{TK}^1 and \mathbf{TK}^2 are fuctionally equivalent to \mathbf{B}_1^{\sim} .

The research was supported by Russian Foundation for Humanities, project Nº 14-03-00341a.

References

- Bochvar A.D. (1938) On a three-valued calculus and its application to analysis of paradoxes of classical extended functional calculus // *History and Philosophy of Logic*, 2, 1981, pp. 87–112
- Karpenko A.S. A maximal paraconsistent logic: The combination of two three-valued isomorphs of classical propositional logic, in D. Batens, C. Mortensen, G. Priest and J.-P. van Bendegem (eds.), *Frontiers of Paraconsistent Logic*, Baldock Research Studies Press, 2000, pp. 181–187

- Karpenko A.S. Foreword. The variety of three-valuedness (in Russian) // L. Devyatkin, N. Prelovskiy, N. Tomova. Within the limits of three-valuedness. Moscow: IF RAS, 2015, pp. 9–33
- 4. Kleene S.C. On a notation for ordinal numbers // *The Journal of Symbolic Logic*, 3, 1938, pp. 150–155
- 5. Lewin R.A., Mikenberg I.F. Literal-paraconsistent and literal-paracomplete matrices // *Math. Log. Quart.*, 52(5), 2006, pp. 478–493
- 6. Sette A.M. On propositional calculus P¹ // Mathematica Japonica, 18, 1973, pp. 173–180
- 7. Sette A.M., Carnielli W.A. Maximal weakly-intuitionistic logics // Studia Logica, 55, 1995, pp. 181–203
- Shestakov V.I. On one fragment of D.A. Bochvar's calculus (in Russian) // Information issues of semiotics, linguistics and automatic translation. VINITI, vol. 1, 1971, pp. 102– 115
- 9. Tomova N.E. A Lattice of implicative extensions of regular Kleene's logics // Report on Mathematical Logic, 47, 2012, pp. 173–182
- Tomova N.E. On the extension of the class of natural three-valued logics: the new classification (in Russian) // L. Devyatkin, N. Prelovskiy, N. Tomova. Within the limits of three-valuedness. Moscow: IF RAS, 2015, pp. 97–130