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NATURAL DEDUCTION RULES FOR TOMOVA’S NATURAL IMPLICATIONS

The class of Tomova’s natural logics is described in [11, 10, 3]. These logics are built over
a propositional language £ with the following alphabet: ({p1,p2,...},7,—, A, V,(,)). The
notion of a £-formula is defined in a standard way. The {—, A,V }-fragments of Tomova’s
natural logics are three-valued regular Kleene’s logics. Implications of Tomova’s logics are
natural in the following sense [3, p. 210-211].

Definition 1 (Natural implication). Let V5 be the set {1,1/2,0} of truth values and D be the set
of designated values such that either D = {1} or D = {1,1/2}. Then implication — is called
natural iff the following conditions hold:

(1) C-extending, i.e. its restrictions to the subset {0, 1} of V3 coincide with classical impli-
cation;

(2) normality in the sense of Lukasiewicz-Tarski, i.e. forall x,y € V3: if x — y € D and
x € D, then y € D (the condition that is sufficient for the verification of modus ponens) [6, p.
134];

(3) consistency, i.e. forall x,y € Vs: if x < y,thenz — y € D.

As follows from the definition of natural implication, there are 6 implications with D = {1}
and 24 implications with D = {1,1/2}.

In this report, we consider two three-valued regular (in Kleene’s sence [4]) logics: strong
Kleene’s logic K3 [4] and Asenjo & Priest’s logic of paradox LP [1, 8]. However, note the class
of all three-valued regular logics is bigger (see [5]) and Tomova deals with all of its elements.
K3 and LP are built in £’s {—, A, V}-fragment and their connectives are defined as follows:
v(ma) = 1 —v(a), via A B) = min(v(a),v(B)), and v(a V ) = maz(v(a),v(5)), where
«, (3 are formulas and v is a valuation. In the case of K3, D = {1} while in the case of LP,
D ={1,1/2}. In L € {Kj3, LP}, the entailment relation is defined as follows: I" =y, « iff for
each valuation v, it holds that if v(vy) € D (for each v € T'), then v(a) € D, where I is a set of
formulas and « is formula.

Natural deduction systems for K3 and LP were presented by Priest [8]. Let ‘R be a set of
the following inference rules:
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As follows from [8], R\ {(EM)} and R\ {(EFQ)}, respectively, are sets of inference
rules for K3 and LP. The notion of an inference is defined in a linear format standardly (see [2]
for a textbook-style definition and [9] for a precise one).
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Let K5, and LP_,, respectively, be K3’s and LP’s extensions by an implication —. Logic
is said to be natural iff it is K3’s or LP’s extension by natural implication. Thus, K3_, and
LP_, are natural logics iff — is natural implication. Besides, let 91Dk, . and D p, be
natural deduction systems for K3, and LP_,, respectively. In this report, we will present all
the inference rules for M® g, , and NDp . Now consider the following ones:
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Our main result is presented below.

Theorem 2. A logic K3_, is natural iff the rules (R.,), (MP), and (R3) are derivable in
NDk,_,. A logic LP_, is natural iff the rules (R.,), (MP), and (R3) are derivable in N® p.,.

The extended version of the report is accepted for publication in Logique et Analyse [7].
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