Non-distributive implications and their application in quantum theory

Eugene Kagan, Alexander Rybalov


Non-distributive implications and their application in quantum theory

Полный текст:

PDF (English)


Baturshin, I., Kaynak, O., & Rudas, I. (2002). Fussy modeling based on generalized conjunction operators. IEEE Transactions on Fuzzy Systems, 10(5), 678-683.

Birkhoff, G., & von Neumann, J. (1936). The logic of quantum mechanics. Annals of Mathematics, 37(4), 823-843.

De Raedt, H., Katsnelson, M. I., & Michielsen, K. (2014). Quantum theory as the most robust description of reproducible experiments. Annals of Physics, 347, 455-73.

Engesser, K., Gabay, D. M., & Lehmann, D. (Eds.). (2009). Handbook of Quantum Logic and Quantum Structures. Quantum Logic. Amsterdam: Elsevier.

Kagan, E., Rybalov, A., & Yager, R. (2014). Multi-valued logic based on probabilitygenerated aggregators. Proc. IEEE 28th Convention IEEEI (pp. 1-5). Eilat: IEEE.

Kagan, E., Rybalov, A., Siegelmann, H., & Yager, R. (2013). Probability-generated aggregators. Int. J. Intelligent Systems, 28(7), 709-727.

Raiffa, H. (1968). Decision Analysis: Introductory Lectures on Choices Under Uncertainty. Reading, MA: Addison-Wesley.

Rybalov, A., Kagan, E., & Yager, R. (2012). Parameterized uninorm and absorbing norm and their application for logic design. Proc. 27-th IEEE Conv. EEEI. DOI 10.1109/EEEI.2012.6377125.

Rybalov, A., Kagan, E., Rapoport, A., & Ben-Gal, I. (2014). Fuzzy implementation of qubits operators. J. Computer Science and Systems Biology, 7(5), 163-168.

Yager, R. R., & Rybalov, A. (1996). Uninorm aggregation operators. Fuzzy Sets and Systems, 80, 111-120.


  • На текущий момент ссылки отсутствуют.

(c) 2018 Eugene Kagan, Alexander Rybalov

Лицензия Creative Commons
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.