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Abstract

I intend to show how probability theory can be regarded as logic-dependent, viewing proba-

bility as a branch of logic in a generalized way. A kind of meta-axiomatics permits us to define

probability measures that are either classical, paraconsistent, intuitionistic, or simultaneously

intuitionistic and paraconsistent, just by parameterizing on consequence relations. In particular,

I intend to discuss theories of probability built upon the paraconsistent Logic of Formal Incon-

sistency Ci, and upon the paraconsistent and paracomplete Logic of Evidence and Truth LETj.

I argue that Ci very naturally encodes an extension of the notion of probability able to express

probabilistic reasoning under an excess of information (contradictions), while LETj encodes

an extension of the notion of probability able to express probabilistic reasoning under lack of

information (incompleteness), and is thus naturally connected to the notion of probability of

evidence. I also discuss how interesting non-standard Bayesian updating can be defined in both

cases. This is a joint project with J. Bueno-Soler and A. Rodrigues. and most results already

appear in [1] and in [5].

1 Consistency versus non-contradictoriness

Paraconsistency is the investigation of logic systems endowed with a negation ¬ such that not

every contradiction of the form p and ¬p entails everything. In other terms, a paraconsistent logic

does not suffer from trivialism, in the sense that a contradiction does not necessarily explode, or

trivialize the deductive machinery of the system. In strict terms, even an irrelevant contradiction in

traditional logic obliges a reasoner that follows such a logic to derive anything from a contradiction

α,¬α , by means of the so-called Principle of Explosion:

(PEx) α,¬α,⊢ β , for arbitrary β ,

while a paraconsistent logician, by using a more cautious way of reasoning, is free of the burden of

(PEx), and could pause to investigate the causes for the contradiction, instead of foolishly deriving

unwanted consequences from it.

Common sense, however, recognizes that some contradictions may be indeed intolerable, and

those would destroy the very act of reasoning (that is, lead to trivialization). This amounts to

recognizing that not all contradictions are equivalent. The Logics of Formal Inconsistency (LFIs),

a family of paraconsistent logics designed to express the notion of consistency (and inconsistency

as well) within the object language by means of a connective ◦ (reading ◦α as “α is consistent”)

realizes such an intuition.

The distinguishing feature of the LFIs is that the principle of explosion is not valid in general:

this principle is not abolished, but restricted to consistent sentences. Therefore, a contradictory

theory may be non trivial, unless the contradiction refers to something consistent.

Such features of the LFIs are condensed in the following law, which is referred to as the “Prin-

ciple of Gentle Explosion”:
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(PGE) ◦α,α,¬α ⊢ β , for every β , although α,¬α 6⊢ β , for some β .

Some philosophers already recognize that it is a mistake to suppose that an inconsistency is

the same as a contradiction (e.g., [9]). The LFIS fully formalize this intuition, and starting from

this perspective it is possible to build a number of logical systems with different assumptions that

not only encode classical reasoning, but also (at the price of adding new principles) converge to

classical logic. This note starts from a certain logic endowed with adequate principles to deal

with our paraconsistent probability measures, without obfuscating the fact, however, that several

other logics would give rise to specific (weaker or stronger) notions of paraconsistent probabilistic

measures.

2 Ci a Logic of Formal Inconsistency

Consider the following stock of propositional axioms and rules:

DEFINITION 2.1. Let Σ be a propositional signature. The logic Ci (over Σ) is defined by the fol-

lowing Hilbert calculus:

Axiom Schemas

Ax1. α → (β → α)

Ax2. (α → β )→ ((α → (β → γ))→ (α → γ))

Ax3. α → (β → (α ∧β ))

Ax4. (α ∧β )→ α

Ax5. (α ∧β )→ β

Ax6. α → (α ∨β )

Ax7. β → (α ∨β )

Ax8. (α → γ)→ ((β → γ)→ ((α ∨β )→ γ))

Ax9. α ∨ (α → β )

Ax10. α ∨¬α

Ax11. ◦α → (α → (¬α → β ))

Ax12. ¬¬α → α

Ax13. α →¬¬α
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Ax14. ¬◦α → (α ∧¬α)

Inference Rule

1. Modus Ponens: α , α → β / β

As detailed investigated in [4], Ci can be extended to the first-order logic QCi (over an appro-

priate extension of Σ) by adding appropriate axioms and rules. It is worth noting that Ax1- Ax9

plusMP define a Hilbert calculus for positive propositional classicallogic (see [3]), and therefore

all the laws concerning positive logic (as distribution of ∧ over ∨, etc.) are valid.

It is instructive to show, as an example, the useful properties of distribution of conjunction over

disjunction that holds as good as in classical logic (not a surprise, since positive classical logic is

incorporated into our paraconsistent logic). However, as the validity of such laws may rise some

doubts, I provide a quick proof of them (where α ≡ β means α ⊢Si β and β ⊢Ci α):

THEOREM 2.2.

1. α ∧ (β ∨ γ)≡ (α ∧β )∨ (α ∧ γ)

2. α ∨ (β ∧ γ)≡ (α ∨β )∧ (α ∨ γ)

Proof. The easy proof from the axioms is left to the reader.

As proved in [3], the logic Ci cannot be semantically characterized by finite matrices, but it can

be characterized in terms of valuations over {0,1}, or bivaluations. As also shown in [3], a strong

(classical) negation can be defined in Ci as ∼β α = α → ⊥β , where ⊥β = (β ∧ (¬β ∧◦β )) is a

bottom formula.1 for any sentence β . In order to simplify matters, a privileged β will be chosen,

and the subscript will be omitted in ⊥β and ∼β from now on.

THEOREM 2.3 (Properties of strong negation). The strong negation ∼ of Ci satisfies all the ex-

pected properties of classical negation.

Proof. All proofs appear in [3].

So, for intance, all the following hold where ⊢ indicates the derivaility in Ci: ⊢∼α → (α → ψ)
for every α and ψ; ⊢ α ∨∼α; ⊢ α →∼∼α; ⊢ ∼∼α → α , and ⊢ ⊥→ α

Also, several meta-theorems, as the Deduction Metatheorem, can be proved in Ci.

Now by defining α to be inconsistent by •α : = ¬◦α axiom (12) and (13) (which permits to

add and eliminate double negations) convey the meaning that ‘ α is not inconsistent if and only if

it is consistent’. Of course, by the very definition and the same axioms on double negations, it also

holds ‘α is not consistent if and only if it is inconsistent’.

Some other relevant results in Ci hold as follows.

THEOREM 2.4. ([3])

1. ◦α ⊢ ¬(α ∧¬α), but the converse does not hold

2. ◦α ⊢ ¬(¬α ∧α), but the converse does not hold

1That is: ⊥β ⊢ ψ for every ψ .
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3. ⊢ ◦◦α ⊢ ◦•α

4. ⊢ ¬•◦α ⊢ ¬••α

5. ⊢ ◦α ∨α ⊢ ◦α ∨¬α

6. ⊢ ◦α ∨α ∧¬α α ⊢ α ∧ (β ∨¬β )

7. α ∧ (β ∨¬β ) ⊢ α

THEOREM 2.5. ([3]) The following are bottom particles in Ci:

1. α ∧¬α ∧◦α ⊢ β , for any β

2. ◦α ∧•α ⊢ β , for any β

3. ◦α ∧¬◦α ⊢ β , for any β

4. •α ∧¬•α ⊢ β , for any β

3 Consistency, inconsistency and paraconsistent probability

As hinted in the previous section, the formal notion of consistency treated here does not depend

on negation, and the logical machinery of the LFIs show that consistency may be conceived as

a primitive concept, whose meaning can be thought of as “conclusively established as true (or

false)”, by extra-logical means, depending on the subject matter. Consistency, in this sense, is a

notion independent of model theoretical and proof-theoretical means. and is more close to the idea

of regularity, or something contrary to change (an elaboration of this view is offered in [2].

The intention here is to introduce a new way to define theories of probability based on some

non-classical logics. A previous approach has been developed in [6], who discusses variations

of paraconsistent Bayesianism based on a four-valued paraconsistent logic. A still earlier attempt

has been briefly sketched in [7]. A completely different view is taken in [8], where probabilistic

semantics is given for a couple of many-valued paraconsistent logics.

Probability functions are usually defined for a σ -algebra of subsets of a given universe set Ω,

but it is also natural to define probability functions directly for sentences in the object language.

They are referred to, respectively, as probability on sets versus probability on sentences.

Although these two approaches are equivalent in classical logic, due to the representation theo-

rems of propositional logic and other properties of Boolean algebras, this is not so for probability

based on other logics, since the algebraic kinship may be lost for non-classical logics, or be much

less immediate. Also, in algebraic terms probability functions in set-theoretical settings are re-

quired to satisfy countable additivity, but since propositional language is compact, for probability

on sentences it suffices to require finite additivity.

DEFINITION 3.1. A probability function for the language L of a logic L, or a L-probability

function, is a function P : L 7→ R satisfying the following conditions, where ⊢L stands for the

syntactic derivability relation of L :

1. Non-negativity: 0 ≤ P(ϕ)≤ 1 for all ϕ ∈ L
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2. Tautologicity: If ⊢ ϕ , then P(ϕ) = 1

3. Anti-Tautologicity: If ϕ ⊢L, then P(ϕ) = 0

4. Comparison: If ψ ⊢ ϕ , then P(ψ)≤ P(ϕ)

5. Finite Additivity: P(ϕ ∨ψ) = P(ϕ)+P(ψ)−P(ϕ ∧ψ)

The meaning of such (meta) axioms can be clarified by noting that Non-Negativity and Finite

Additivity are logic-independent axioms; while Tautologicity and Anti-Tautologicity, as well as

Comparison, are logic-dependent axioms. Based on this understanding, one may define:

DEFINITION 3.2. Classical, Intuitionistic, paraconsisten and evidence-based probability

• If L is CL , an L-probability is a classical probability function.

• if L is LJ, an L-probability is an intuitionistic probability function.

• if L is Ci, an L-probability is a paraconsistent probability function.

• if L is LETj, an L-probability is an evidence-based probability function.

Two events α and β are said to be independent if P(α ∧β ) = P(α) ·P(β ). Two events can be

independent relative to one probability measure and dependent relative to another.

Some immediate consequences of the axioms are the following:

THEOREM 3.3. 1. If δ is any bottom particle in Ci then P(δ ) = 0.

2. If ψ and ϕ are logically equivalent in the sense that ψ ⊢ ϕ ϕ ⊢ ψ , then P(ψ) = P(ϕ).

Proof. Immediate, in view of the axioms.

As a consequence of the previous Theorem, P(α ∧¬α ∧◦α) = 0, P(◦α ∧•α) = 0, P(◦α ∧¬◦
α) = 0 and P(•α ∧¬•α) = 0, for any probability function P.

Two sentences α and β are said to be logically incompatible if α,β ⊢ ϕ , for any ϕ (or equiva-

lently, if α ∧β act as a bottom particle). Some simple calculation rules follow:

THEOREM 3.4.

1. P(α ∨β ) = P(α)+P(β ), if α and β are logically incompatible.

2. P(◦α) = 2− (P(α)+P(¬α))

3. P(α ∧¬α) = P(α)+P(¬α)−1

4. P(∼ α) = 1−P(α)

5. P(¬◦α) = 1−P(◦α)

Proof. Only items (1) and (2) will be proved (the rest is routine): (1): Since α and β are logically

incompatible, α ∧β act as a bottom particle, and the result is immediate by Theorem 3.3 and Finite

Additivity.

(2): Use Finite Additivity in the sentences ◦α ∨ (α ∧¬α) and ◦α ∧ (α ∧¬α).
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Probabilities are sometimes seen as generalized truth values. The so-called probabilistic se-

mantics in this way replaces the valuations v : L 7→ {0,1} of classical propositional logic with the

probability functions ranging on the real unit interval [0,1], and valuations can be regarded as de-

generate probability functions. In this sense, classical logic is to be regarded as a special case of

probability logic. An analogous property holds for Ci and the above defined notion of paraconsis-

tent probability measure is shown below.

Define 
P as a probabilistic semantic relation whose meaning is Γ 
P ϕ if and only if for every

probability function P, if P(ψ) = 1 for every ψ ∈ Γ then P(ϕ) = 1. It can be shown that Ci is

(strongly) sound and complete with respect to such probabilistic semantics:

THEOREM 3.5.

Γ ⊢ ϕ if and only if Γ 
P ϕ

Proof. The left-to-right direction follows directly from the axioms of probability, namely, Tauto-

logicity and Comparison, plus the compactness property of Ci proofs. For the other direction an

interested reader can consult [1].

4 Conditional probabilities and paraconsistent updating

Perhaps the most interesting use of probability in paraconsistent logic is to come to help to the

so-called Bayesian epistemology, or the formal representation of belief degrees in philosophy. The

well-known Bayes rule permits one to update probabilities as new information is acquired, and, in

the paraconsistent case, even when such new information involves some degree of contradictori-

ness.

The conditional probability of α given β , for P(β ) 6= 0, is defined (as usual) as:

P(α/β ) =
P(α ∧β )

P(β )

The traditional Bayes’ Theorem for conditionalization says, for P(β ) 6= 0:

P(α/β ) =
P(β/α) ·P(α)

P(β )

As usual, P(α) here denotes the prior probability, i.e, is the probability of α before β has been

observed. P(α/β ) denotes the posterior probability, i.e., the probability of α after β is observed.

P(β/α) is the likelihood, or the probability of observing β given α , and P(β ) is called the marginal

likelihood or "model evidence".

A paraconsistent version of Bayes’ Theorem can be set up now by making the marginal likeli-

hood P(β ) to be analyzed in terms of P(α), P(¬α) and P(α ∧¬α) when P(α ∧¬α) 6= 0:

THEOREM 4.1. Paraconsistent Bayes’ Condicionalization Rule (PBCR):

P(α/β ) =
P(β/α) ·P(α)

P(β/α) ·P(α)+P(β/¬α) ·P(¬α)−P(β/α ∧¬α) ·P(α ∧¬α)

if P(α ∧¬α) 6= 0.
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Proof. See [1].

As a slogan, (PBCR) can be summarized as saying: “Posterior probability is proportional to

likelihood times prior probability, and inversely proportional to the marginal likelihood analyzed

in terms of ts components”. Some examples of applications studied in [1] suggest the following in-

terpretation about Bayesian paraconsistent updates: When a test (involving contradictions) is more

unreliable, paraconsistent probabilities tend to be cautiously optimistic, that is, values tend to ex-

pect the most favorable outcome. On the other hand, when a test (again, involving contradictions) is

more reliable, paraconsistent probabilities tend to be cautiously pessimistic, in the sense of favoring

expectation of undesirable outcomes, Notwithstanding, the test is cautious in all cases.

5 Evidence and probability: the logic LETj

The logic LETj, introduced in [5], is a paraconsistent and intuitionistic Logic of Evidence and

Truth, whose main intuitive motivations are the following:

• ‘A holds’ means ‘there is evidence that A is true’;

• ‘A does not hold’ means ‘there is no evidence thatA is true’;

• ‘¬Aholds’ means ‘there is evidence that A is false’;

• ‘¬A does not hold’ means ‘there is no evidence that A is false’.

It is to be remarked that neither excluded middle nor explosion hold in LETj because evidence

can be incomplete as well as contradictory (albeit reasoning about evidence does not need to be

explosive.

The axiomatic presentation of LETj is the following:

DEFINITION 5.1. The system LETj is composed by:

1. Axioms

(a) (PC+) all positive axioms of PC, minus p∨ (p ⊃ q) ( “Dummett’s law”).

(b) (bC1, or Gentle Explosion) ◦p ⊃ [p ⊃ (¬p ⊃ q)]

(c) (Classicality) ◦p ⊃ (p∨¬p)

(d) (DN) ¬¬p ≡ p

(e) (⊃-De Morgan) ¬(p ⊃ q)≡ p∧¬q

(f) (∨-De Morgan) ¬(p∨q)≡ ¬p∧¬q

(g) (∧-De Morgan) ¬(p∧q)≡ ¬p∨¬q

2. Rule of MP

Notice that p∨¬p does not hold and new axioms have been introduced in comparison with the

purely paraconsistent logic Ci. Distinct negations can be defined in LETj, besides ¬:

• An intuitionistic negation: ∼ α
de f
= α ⊃ [p∧ (¬p∧◦p)]
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• A strong negation: ≃ α
de f
= ¬α ∧◦α

Though they are equivalent in Ci, they do not coincide in LETj

• ∼ α 6⊢≃ α , ≃ α ⊢∼ α

• 6⊢ (α∨ ∼ α ∨◦α) 6⊢ (α∨ ≃ α ∨◦α)

• α∨ ∼ α 6⊢ α∨ ≃ α , α∨ ≃ α 6⊢ α∨ ∼ α

Some nice logical features of LETj are the following (for proofs, the reader is invited to see

[5]):

• ¬(α ∧¬α) and (α ∨¬α) are logically equivalent in LETj, but neither of them is logically

equivalent to ◦α , i.e. non-contradiction and excluded middle coincide, but differ from clas-

sicality

• It is impossible to prove classicality: LETj has no theorems of the form ◦α

• Classicality propagates: if ◦α1, ◦α2 ... ◦αn hold, any formula depending only on α1,α2, ...,αn

formed by ⊃, ∧, ∨ and ¬ behave classically

The notion of probability defined in LETj is of particular interest, since it defines probability

functions which are closed to a measure of evidence. Some features of the probability functions

over LETj are, for α and β formulas in LETj:

1. P(α ∨β ) = P(α)+P(β ), if α and β are logically incompatible.

2. P(≃ α) = 1−P(α)

3. P(∼ α) 6= 1−P(α) in general

4. P(◦α ∨¬(α ∨¬α)) = P(◦α)+P(¬(α ∨¬α))

5. P(◦α)≤ P(α ∨¬α)≤ 1

6. P(◦α)≤ P(α ⊃ (¬α ⊃ β )≤1

To sum up, evidence and truth in LETj are related in a paraconsistent and paracomplete way,

taking into account that the following possible scenarios are possible for a certain situation:

• No evidence at all: both α and ¬α do not hold.

• Only evidence that α is true: α holds, ¬α does not hold.

• Only evidence that α is false: ¬α holds, α does not hold.

• Conflicting evidence: both α and ¬α hold.

LETj is designed to express the notions of conclusive and non-conclusive evidence, as well as

the preservation of evidence; it is also able to recover classical logic for propositions whose truth-

value have been conclusively established. In this way, it can also express the notion of preservation

of truth. Consequently, a notion of probability based on LETj will reflect such scenarios with

exciting possibilities and unfoldings.
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6 Summary, comments and conclusions

I have reviewed some basic points about paraconsistency, characterizing a paraconsistent logic, in

general terms, as a logical system endowed with a notion of consistency ◦ and a negation ¬ which

is free from trivialism, in the sense that a contradiction expressed by means of a negation ¬ does

not necessarily trivialize the underlying consequence relation, although consistent contradictions

do explode. A measure of probability has been defined for two such logics, for the system Ciand

for the system LETj, taking profit from the underlying notion of consistency, and essaying the first

steps towards new versions of paraconsistent Bayesian updating.

How can paraconsistent probabilities be interpreted? One possible viewpoint is to interpret

paraconsistent probabilities as degrees of belief that a rational agent attaches to events, in such a

way are such degrees respect the following principles: the necessary events (for instance, tautolo-

gies) get maximum degrees, impossible events (for instance, bottom particles) get lowest degrees,

probabilities respect logical consequence, and finite additivity is guaranteed. The last condition

seems to be less obvious, but the so-called Dutch Book arguments provide, at least for the clas-

sical case, a line of justification for keeping finite additivity. It should be taken into account that

our underlying logic Ci enlarges the classical scenarios in important ways: so for instance, even

if impossible events should have degree zero by a rational agent, neither events of degree zero by

a rational agent are necessarily impossible, nor a contradiction is an impossible event (although a

consistent contradiction is, as commented above).

The core question, however, is not whether the laws of probability should be classified as laws

of logic, but how logic and probability could be combined to refine reasoning. In this respect,

considering that probability theory differs from classical logic in various aspects, and paraconsistent

logic differs as well, and that both are tolerant to contradictions, inexactness, and so on, their

combination offers a new and exciting reasoning paradigm.
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