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thE lAnguAgE MultivErsE

Resume: This paper argues that logic can benefit from a recent trend in linguistics, namely the study 
of multilingualism. Giving up monolingualism in logic does not necessarily lead to logical pluralism. 
Often enough pluralism is just a fight for the recognition of one’s own language rather than a plea 
for a different logic. Once we let go of the monolithic view of language and embrace multilingualism, 
interesting new avenues appear for logic that are worth exploring. Moreover, not only is it possible 
to use logic to analyse the multilingual universe, it is also quite revealing to use the linguistic 
methodology to reflect on the metatheory of logic itself.
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ЯЗЫКоваЯ МулЬТивСеленнаЯ 

Резюме: в статье обсуждается вопрос о том, что полезного логика может для себя найти 
в современной тенденции в лингвистике изучать явление многоязычия. отказ от моноязычия 
в логике не ведёт с необходимостью к логическому плюрализму. достаточно часто плюра-
лизм — это просто борьба за признание своего собственного языка, нежели довод в пользу 
иной логики. При отказе от монолитного взгляда на язык и выборе многоязычия для ло- 
гики открываются новые интересные перспективы, достойные исследования. кроме того, 
не только можно использовать логику для анализа многоязычного универсума, но лингви-
стическая методология может быть применена для описания самой логической метатеории.
Ключевые слова: мультивселенная, многоязычие, логический плюрализм.

1. introduction

It is obvious that people speak different languages. Today there are (still) some 5000 
languages spoken, not to mention the dialects thereof. However, the implications espe-
cially for linguistic theory are not really clear to this day. The analysis has always tried 
to eliminate this diversity in favour of some ideal language ([Eco 1997]). Especially 
logical theory has advanced the idea that there is some privileged language from which 
all others are derived, say, through God’s intervention in Babel, or to which all rational 
education should lead. For some time people entertained the view that some natural lan-
guage was inherently “logical”, be it French or English. Today, the prevalent view is that 

4 Marcus Kracht, Prof. Dr., Fakultät für Linguistik und Literaturwissenschaft, Universität Bielefeld. Post-
fach 10 01 31, 33501 Bielefeld.

marcus.kracht@uni-bielefeld.de 



25Логико-философские штудии. Вып. 14

M. Kracht. The language multiverse

such languages have to be artificial. (I am ignoring the idea prevalent among mathemati-
cians that there is no language worth that name and that we are working so to speak 
without syntax.) This has never worked — not even in logic. There is no reason why it 
should; the evidence speaks against that. Perhaps the resistance to accept a plurality of 
languages stems from a fear that the situation becomes otherwise unmanageable. Such 
fears are however unfounded. Actually, as we shall see below, there are some benefits 
to dealing with multitudes of languages. 

The present paper argues that all attempts at avoiding or eliminating the multitude 
of languages are doomed to fail and that we should instead make the best of it. The author, 
considering himself both a logician and a linguist, confesses that he may belabour points 
that are trivial to a logician because they concern the form and not the content of expres-
sions though I sense agreement in the recent [Belluci, Pietarinen 2016] that the matter is 
worth our attention. As logic strives to be a foundational discipline it must also be able 
to provide answers to (seemingly) naive questions. Needless to say, I do not think the ques-
tions raised here are as innocent as they appear.

We shall look first at the scale of the problem in linguistic terms. Then we shall make 
a turn and look at a somewhat underrepresented aspect: logical languages. Here the per-
haps surprising result is that the same pluralism exists in everyday logical theory, and 
that, again there is no other way but to accept the predicament. 

I wish to thank the participants of Logic Today 2016 as well as Kai Wehmeier and 
Maciej Kłeczek for useful discussions.

2. how many languages do we speak?

For quite some time now, linguists have studied language learning, multilingualism 
and code switching. The globalisation and the growing numbers of migrants have lead to 
growing numbers of communities in which several languages are being spoken and com-
munication must be established between groups of people of different background. What 
is not so well known is that even a single language is not homogeneous, and that speakers 
never speak just one language but rather several of them. However, linguistically there is 
a hesitation to call some of them languages.

Technical vocabulary is one instance where a language is being created that looks like 
a natural language but isn’t considered as one. Mathematics borrows lots of words from 
its host language like “group”, “ring”, “field”, and so on, but gives them completely dif-
ferent meanings. To make matters worse, many words have several meanings in different 
subfields, such as “normal”. Depending on what you talk about, this word can mean 
vastly different things. 

A mathematician will not claim that these words mean altogether different things to 
them than to other people. They will not claim that the word “group” only has the mean-
ing that they have given it. They will say that it has that other meaning only in special 
discourse. Other than that it has the meaning that English speakers decide it should have. 
So we have factually two (or even more) languages in parallel. The same applies to many 
other discourses, such as physics, law, sports, and so on.

Standardly, all these variations are included in a dictionary of the language. It is then 
said that if a word is given a new meaning that given word has many different meanings 
depending on context. In this way the terminological neologisms are incorporated into 
the language from which they are derived. This is justified on the grounds that the words 
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keep their morphology. On the other hand technically this underestimates the complexity 
of the situation. In sciences, the concepts to which the words are linked are translingual. 
When astronomers decided to revise the meaning of the English word “planet” this af-
fected virtually all languages at the same time, as German astronomers are now required 
to use the word “Planet” in the same way, as are Hungarian astronomers with respect 
to the word “bolygó”. Hence, the scientific use of that word is markedly different from 
its ordinary use, since it does not belong to the English language alone!

Linguists have also drawn attention to factors determining the way we speak. Regio-
nal variation is referred to as dialectal variation, different social relationships give rise 
to different sociolects, or registers, and so on. Finally, people differ from each other 
by slight differences in uses of this or that word; we say they have different idiolects. 

With all this variety of language we should be asking what the theory can offer to under-
stand the workings of the network of interwoven languages. Unfortunately, language 
theory largely insists that a language community is homogeneous, which is to say, strict-
ly monolingual. While syntacticians have recently given in to the thought that syntax may 
not be so uniform (a phenomenon that in generative grammar runs under the name of 
microvariation), formal semantics has so far not responded to the challenge. The papers 
[Kracht, Klein 2014a; Kracht, Klein 2014b] are just a modest beginning.

3. Multilingualism in computer science

The situation in computer science needs special attention because there we actually 
have a similar situation as in logic but the need for solutions is rather urgent, which is 
why the matter has been adressed many times. To start, there are probably hundreds of 
programming languages in this world, each having different incarnations, called versions, 
which are not always interoperable. It is true that programmers strive for what is called 
downward compatibility, which means that newer versions still handle code for older 
versions in the same way, but this is not always possible or practical. 

The problem is that work done in one programming language may not be usable across 
other languages. So one might have to go through the effort again in a new language. This 
means that a lot of effort is wasted. Thus there have been a number of attempts at analys-
ing and solving the problem. To begin with the notion of an “institution” has been intro-
duced by Joseph Goguen ([Goguen, Burstall 1992], see also the survey [Diaconescu 2012]) 
to analyse the problem. Then there is “Common Logic” (ISO 24707), and initiatives such 
as MMt (meta-meta-theory, [Rabe 2015]). However, in the present cases the frameworks 
do not offer true translations; this is especially true for institutions. Translation only preserves 
judgements, not denotations in general. We gain in flexibility, but we lose explanation.

For a linguist it appears futile to try and rise above everybody else. “Meta”ing your 
way out is not the answer. It just shifts the point of attention one level higher. This much 
we know from the many failed attempts to provide a logically pure language (see again 
[Eco 1997]). 

Indeed, there are also projects that do not try to unify the languages but rather allow 
to integrate them by providing controlled forms of code switching, or to use a more fa-
miliar term, by allowing to import code from another language. Such is the case with PHP 
or JavaScript (in HTML), or the integration of OCaml and CDuce into Ocamlduce (see 
http://www.cduce.org/ocaml_manual.html). More ambitious projects exist that integrate 
diverse programming languages. 
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Seen from the standpoint of the descriptive linguist, we witness side by side attempts 
at unifying and/or standardising languages (equivalent to prescribing, say, the use of 
English in documents) and at providing translation tools. Or, using another example, there 
exist nations than dictate a single language as the unique official language (France, the US) 
and those that make most of them official and issue all documents in all languages (Switzer-
land, the EU, India being an intermediate case).

4. logical pluralism

The problem of linguistic variation may seem far removed from logic. But it is not. 
Logic is about judgement, and judgements are expressed in a language. Thus there can 
be no logic in the proper sense of the word without there being a language to begin with. 
This will raise questions about the relationship between logic and language. There is, 
namely, a fundamental question lurking in the background. And it is this:

Is there one logic or many? 

For if logic is language-bound as its judgments are necessarily expressed in some 
language then there is a dependency on the language in question. Logicians have sought 
to circumvent the problem by choosing a vantage point (“the language of propositional 
logic”) and then translating everything into that. But the vantage point itself is far from 
being undisputed. So what happens if we choose another one? If there is no ideal language, 
no ideal vantage point from which to study the matter, could there not be several logics 
simply because there are different languages? I guess that point is being made, at least 
implicitly, by some authors. They claim that the fact that we speak different languages 
gives rise to different logics. Hartrey Field finds this uninteresting qua logical problem, 
and I agree. Somehow the differences seem to be just about the syntax and the chosen 
meanings for the primitives. What he asks for is what he calls an all purpose logic. 
A logic you use when none is suggested by the circumstances. A logic that you would use 
precisely when you realise that logic depends on language, and you would like your 
judgements to be about what there is rather than what we call it. 

5. the language multiverse

Now let us enter the technical discussion. Let us fix some technical vocabulary. We start 
with a set E of expressions, and a set M of meanings. They can be as large as we like, 
preferrably (at least) countably infinite. E may for example contain all finite sequences 
of Unicode symbols. A sign is a pair (e, m), where e is in E and m is in M. A language 
is a subset of E × M. Given L, L’ ⊆ E × M, a translation is a map τ: E ↳E such that  
(e, m) ∈ L iff (τ(e), m) ∈ L’. (Here, the symbol ↳ denotes partial functions. In the present 
context, τ may be partial as a map from E to E, but one would normally require it to be 
totally defined on L. It is not required to be surjective, though.) 

Definition 1. The language multiverse over E × M is the category of all languages 
(as objects) and translations (as morphisms). 

To recall, a category is a structure (O, M, i, c, d, ∘), where O and M are classes,  
O the class of objects and M the class of morphisms; i maps each object A to a morphism 
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i(A) (the identity on A), d and c map each morphism to its domain (origin) and codomain 
(target), respectively. And, finally, ∘is a partial map from M × M to M, the composition 
of morphisms. By way of example, let O be the set (!) of sets of natural numbers, 
M the set of functions between them, i(S) the identity on S, and d(f) and c(f) the first 
and second projection respectively (a function from A to B being a subset of A × B). 
And, finally, ∘ is the function composition. (See [MacLane 1971] for background and 
more examples.)

The use of categories serves no theoretical purpose other than providing a succinct 
statement of the kind of structure we are dealing with. There is an obvious dependency 
on the sets E and M; it is a dependency that cannot be removed but seems to be rather 
irrelevant. I shall not comment on it any further. Also, we do not have much to say about 
the role of M. It will become apparent below that we only need very little structure on M. 
Some fraction of a typed universe will be enough. 

Now let’s turn to grammars. Grammars spell out the structure of a sign. They are 
finite devices to generate a language. Let F be a finite set, the set of function symbols, 
and Ω a function from F into the set of natural numbers. F is abstract; it is basically 
a list of symbols to distinguish constructions (or syntactic rules) from each other. We 
call Ω a signature. It assigns an arity to each symbol. A grammar is a pair (Ω, I), where 
I assigns to every f ∈ F a partial (!) function on E × M with arity Ω(f). I can be ex-
tended to the terms over the signature. It becomes a partial homomorphism from the 
algebra of all Ω-terms into a suitable algebra over the signs. Namely, for each f ∈ F, 
we introduce an Ω(f)-ary function I(f) on the set of signs. E × M equipped with these 
functions is a partial Ω-algebra. The grammar can thus be said to impose an algebraic 
structure on the set of signs.

The set of (Ω-)terms is defined inductively as follows. If f ∈ F and t(i), i < Ω(f), are 
terms so is ft(0)t(1) … t(Ω(f) − 1). Note that terms are written in Polish Notation. Note 
the special case Ω(f) = 0. In that case f alone is an Ω-term. Terms are evaluated in E × M 
 using the interpretation function I: 

(1) * (ft(0)t(1) … t(Ω(f) − 1)) := I(f)(∗(t(0)),∗(t(1)), … , ∗(t(Ω(f)−1)))  

(The evaluation function ∗ obviously depends on the grammar in question, but we will 
not explicitly call attention to that fact through notation.) Not all terms evaluate to a sign. 
Those that do are called definite. In other words, t is called definite if ∗(t) is defined. Then 
L(G) is the set of all ∗(t) where t is a definite Ω-term.

It is worth keeping in mind that we distinguish between expressions and terms. The ex-
pressions are what you get on paper. The term is an abstract object; in Montague Grammar 
it is also called the parse term. It tells you the history of the expression, if you will. How-
ever, terms are evaluated into signs, not expressions. The expression is just part of the 
sign. Linguistic theory to a large part concerns itself with the problem of analysis. The ques-
tion is not what expressions exist (though that is often also problematic) but how language 
generates them from a stock of basic expressions and if so what meanings they have. 
Different analyses correspond to different grammars. One and the same language (set 
of signs) can have vastly different grammars even given the signature. 

G is independent if I(f) can be decomposed into a pair of partial functions of arity Ω(f), 
denoted ε(f) and μ(f), respectively, where ε(f) operates on E and μ(f) operates on M. In that 
case we have for Ω(f) = 2: 
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(2) I(f)((e, m), (e', m')) = (ε(f)(e, e'), μ(f)(m, m'))   
where the left hand side is defined if and only if the right hand side is defined.

We give an example. Let F be the set {f, g, h, k}. The signature is Ω: f → 0, g → 0,  
h → 1, k → 2. Write “ · ” for sequence concatenation. Now interpret the function symbols 
as follows. 

• I(f)() := (f, 0); 
• I(g)() := (t, 1); 
• I(h)((e, m)) := ((· ~ · e ·), 1 − m); 
• I(k)((e, m), (e', m')) := ((· e · ˄ · e' ·), m ∩ m'). 

This defines the grammar G. G is independent. This is obvious from the description 
of the functions. The term khfg can now be evaluated as follows. 

(3) ∗(khfg) = (((~ f) ˄ t), 1)       

The signature is not fixed. This may be technically awkward. There is a fix for that. 
We introduce the universal signature Ʊ, consisting of a countable family F(i), i ∈ ω, 
of countable sets of function symbols. For each i, F(i) contains the function symbols of 
arity i. A grammar can be seen as a Ʊ-grammar where almost all (= all but finitely many) 
I(f) are empty. 

6. structural translations

We have introduced above the notion of a translation. These are meaning preserving 
maps between languages. Evidently, maps between grammars should induce translations 
of the generated languages. However, we want that the translations be structural in the 
sense of the grammars as well. In general a structural translation is a function ζ that as-
signs to each function symbol f an Ʊ-term function ζ(f) of identical arity such that 

(4) I(f)(σ(0), …, σ(Ʊ (f) − 1)) = ζ(f)(σ(0), …, σ(Ʊ (f) − 1)) 

where the right hand side is defined if the left hand side is defined, though not necessar-
ily conversely. 

While the term function ζ(f) operates on E × M, we may also think of it as a term. 
In the sequel we shall not distinguish the two in notation. The translation can be ex-
tended to a homomorphism hζ of the term algebras. The condition (4) says that if the 
term t is definite, so is hζ(t). If both are defined, then we must have ∗(t) = (e, m) and 
∗(hζ(t)) = (e', m) for some e, e' ∈ E and m ∈ M. This follows from the requirement that 
ζ induces a translation of the languages.

We give some examples. Let F be the set {f, g, h, k}. The signature is Ω: f → 0, g → 0, 
h → 1, k → 2. Interpret the function symbols as follows. 

• I(f)() := (f, 0); 
• I(g)() := (t, 1); 
• I(h)((e, m)) := (~ · e, 1 − m); 
• I(k)((e, m), (e', m')) := (˄ · e · e', m ∩ m'). 
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Call this grammar G'. It has the same signature as G. G' presents the familiar Polish 
Notation. Define ζ to be the identity. Then if t is a term and ∗(t) = (e, m), its translation is 
∗(hζ(t)) = (e', m), where e' is e written in Polish Notation. 

A second example. Let F again be the set {f, g, h, k}. The signature is Ω: f → 0, g → 0, 
h → 1, k → 2. Interpret the function symbols as follows. 

• I(f)() := (f, 0); 
• I(g)() := (t, 1); 
• I(h)((e, m)) := ((· ~ · e ·),1−m); 
• I(k)((e, m), (e', m')) := ((· e · ˄ · e' ·), m ∪ m'). 

This defines the grammar V. The translation η works as follows. 

1. η(f)() := I(f)(). 
2. η(g)() := I(g)(). 
3. η(h)(σ) := I(h)(σ). 
4. η(k))(σ, σ') := I(h)(I(k)(I(h)(σ), I(h)(σ'))). 

(The notational clutter can be removed if we allow ourselves to write, for example, 
η(k)(σ, σ') := h(k(h(σ), h(σ'))), skipping the interpretation.) It is readily checked that this 
is a structural translation. This follows from de Morgan’s Law that p ∪ q = −((−p) ∩ (−q)). 

Definition 2 The grammar multiverse over E × M is a category with Ʊ-grammars as 
objects and structural translations as morphisms. 

To illustrate the idea behind this definition, consider writing a text on classical logic. 
You first want to decide on the set of connectives. Maybe you have a preferred choice, 
maybe not. Maybe you write: Choose “enough” connectives — but what does that mean 
exactly? Next you need to decide on the shape of variables; and finally, you need to decide 
how you write formulae. Do you drop brackets, and if so, where? Do you write binary 
connectives in infix? 

We want to maintain, though, that all this is innocent. We can choose whatever we 
want. For this to be a reasonable assumption, though, it needs to be assumed that we are 
actually speaking several dialects of propositional logic but that we have no difficulty to 
translate between them. And that there is no single “correct” language. Except of course 
that we need to ensure unique readability. 

7. logic as abstraction

We have said above that logic depends on language. If there are several languages it 
might well be that we also have different logics. Let’s see where this leads us. Consider 
the following rule. 

(5) P ˄ Q / P   

This rule is expressed in a certain language. Hence it is particular to that language. 
The letters P, Q stand for propositions. This standard formulation does not mention any 
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grammar, so we must fill in some details. Given grammar G above we can formulate 
the rule as follows. 

(6) (· e · ˄· e' ·) / e 

In this form it is about expressions, not signs. This rule is called valid if (and only if) 
for all e and e': if ((· e · ˄ · e' ·), 1) ∈ L(G) then (e, 1) ∈ L(G). I stress here that valid-
ity is thus defined using the grammar of the language and the particular role of the element 
denoted by “1”.

A side remark is in order. (6) is called admissible if for every substitution σ, if σ(P) 
is a theorem (= true under all assignments), so is σ(Q). This is just to say that validity is 
defined here as truth preservation, but this is strictly speaking just a convention. 

Finally, we may take advantage of the fact that the expression (· e · ˄  · e' ·) is nothing 
but ε(k)(e, e'). Thus we may once again reformulate the rule as follows. 

(7) ε(k)(e, e') / e 

In this formulation the dependency on the actual string is removed and the rule can 
now be abstracted from the grammar. For example, translating it into Polish Notation 
becomes straightforward. (We are benefitting here from the fact that the rule is actually 
skeletal.)

In which sense is this rule dependent on L(G), or G for that matter? And furthermore 
what is the meaning of that dependency if it exists?

As it turns out, rules are heavily dependent on the language and its grammar. The rea-
sons are not obvious at first sight. Firstly, the rule is valid only if the interpretation of the 
symbols is kept fixed. If ˄ is actually interpreted as ∪, the rule is obviously not valid. 
This is why I have insisted that translations be meaning preserving. However, this solves 
the problem only half way. We still have the possibility of interpreting ˄  as ∪. Recall the 
definition of the grammar V. Translate k(t, t') by h(k(h(t), h(t'))). This is meaning preserv-
ing. The rule (6) must now be rendered 

(8) ε(h)(ε(k)(ε(h)(e), ε(h)(e'))) / e 

or in terms of concrete strings: 

(9) ( ~ (( ~ e) ˄ ( ~ e'))) / e 

It is worth recalling here the distinction between logical and nonlogical symbols. By de-
finition, a logical symbol is one whose (expression and) meaning is fixed in advance. Thus, 
predicate logic has a fixed stock of logical symbols to which an arbitrary set of nonlogical 
symbols (of any chosen arity and meaning) can be added. However, this distinction is sim-
ply one of convenience. The decision to denote a given function on truth values by some 
symbol, say ˄, is in itself an arbitrary one and can be revised at any given moment. 

More is to come, though. Evidently, we cannot base our formulation of the rule on the 
concrete strings, for they depend on the choice of functions on expressions (infix notation 
vs Polish Notation). Nor can we base them on the terms since the symbols may receive 
different interpretations. 
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Finally, notice that translations can also extend the meaning of symbols. If therefore 
we were to base the rule on the concrete strings, the following may happen. Suppose 
we extend G to the grammar which has an additional symbol f ' with arity 0 such that 
I(f ')( ) = (t, 0). The new language is ambiguous because t can denote either 1 or 0. What 
should now be the status of the rule (6)? Recall that we can interpret t in two different 
ways: it is the exponent of f (and therefore true) or the exponent of f ' (and therefore 
false). How do we read the assumption (· e · ˄ · e' · )? Should we say it is true because 
it is true in at least one instance? Or should we say it is false because it is false in at least 
one instance? Likewise for the conclusion. And how about the two instances of e in the 
rule. If we decide to read the first as the exponent of f, are we then committed to the same 
reading in the conclusion? 

Any of the choices lead to different results. For example, consider the rule 

(10) e / ε(k)(e, e') 

It is valid if we decide to treat a formula as false in case one instance is false (and true 
otherwise). For either e is a conjunction of one or more fs, then it is false; or it contains 
at least one t, in which case it has one false instance. This carries over to the conclusion. 
If we decide that a formula is true if it has a true instance, the rule is however invalid. 
Take e = t and e' = f. 

Additionally, there is a choice according to the different instances of an expression. 
I suggest to treat the two occurrences of e as coming from the same term. (In language 
this is typically the norm; when ambiguous words are being used in an argument then the 
meaning should be held constant.) However, that in itself suggests that the rule is about 
terms not expressions. Since logicians generally avoid ambiguity, this difference is im-
material. In general, however, we must use terms. This leads to unambiguous formulations 
but does not remove the dependency on the grammar, as we have just seen. Alternatively, 
we can use a regimented language that is uniquely readable, so the map from terms to ex-
pressions is injective. 

The validity of the rule depended on the meanings that the expressions have. Again, 
two readings of this are possible. The first is the substitutional reading. Here we read (7) 
as saying that whatever terms t, t' exist, if ∗(k(t, t')) = (e, 1) for some e, then ∗(t) = (e', m) 
for some e'. To rephrase this call a term t true if ∗(t) = (e, 1) for some e. Then the rule 
says that for any two terms t and t', if k(t, t') is true so is t. The other reading is the fol-
lowing. Suppose there are signs (e, m), (e', m') such that I(k)((e, m), (e', m')) = (e'', 1). 
Then m = 1. In the second formulation we quantify over all signs, also those that cannot 
be expressed using a term. 

Again, if the rule expresses a regularity of the grammar then it expresses a regularity 
of its terms, and so the substitutional interpretation is the only one available.

One thing that I have no yet discussed (as it will be discussed in the next section) is the 
role of variables. Notice that none of the grammars have genuine variables. And that pro-
vides another point of diversion. As matters stand now, variables are proxy for expressions 
(substitutional interpretation) or signs (nonsubstitutional interpretation). Now if we intro-
duce variables into the language itself, then variables can also figure in the formulation  
of the rules, which introduces its own problems of ambiguity, as discussed in [Fine 2007].

The conclusion is the following. There is an interpretive rule (held constant) that 
regulates what it takes for a rule to be valid in a language or a grammar. Translations can 
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be faithful but may still render rules invalid. This is because they interpret the rule in 
a larger language that may exhibit counterexamples. There are many examples of that 
kind. We may for example venture into three-valued logic by introducing a constant that 
has the value u different from 0 and 1, and subsequently expand the interpretation of our 
symbols to accommodate for the new values. All this is perfectly sound. But it casts 
a shadow on our understanding of logic: are we not heading towards logical pluralism 
that way? I think not. The reason is that if language is no longer universal, so is the logic, 
since it depends on the language. It gives way to a reasoning beyond language. That in 
turn is based on logical thinking (dare I say so?). What is its logic? So far it is classical, 
as far as I am concerned. Indeed, classical logic serves as a last resort, and anything that 
we do in this essay can be understood using it.

But then where is this classical logic if not on the metalevel? Haven’t we just decided 
that it is used in absence of a language? My idea is that this is not necessarily so. Instead, 
I argue that classical logic is not on the metalevel, but simply encoded in any two valued 
logic subject to conditions of unique readability and expressivity constraints (namely that 
every function on the set {0,1} must be a term function of the induced algebra). To inter-
pret a nonclassical logic we need to come up with a nonstandard translation. 

8. Predicate logic or: What to do with variables
The theory of multiverses can actually be put to use in predicate logic. There is an ex-

tensive literature on the meaning of variables. The questions that appear are: What is the 
meaning of a variable? And how do we explicate the meaning of a quantifier? The answer 
that will be given here is not orthodox but derives from the mathematical practice rather 
than the textbooks on logic. 

Consider the following theorem and proof.
 
theoreM. There are infinitely many prime numbers. 

Proof. Suppose not. Let {p(1), p(2), … , p(n)} be all the prime numbers. Let q be 1 + 
p(1) × p(2) × … × p(n). Then either q is prime (and is distinct from all the p(i)), or it has 
a prime divisor, r. Then r is distinct from all the p(i). QED 

This proof begins by supposing that we have finitely many primes, and shows them 
to us in the form of a bunch of symbols, n, p(1), p(2), and so on. These symbols are new. 
We have not agreed beforehand that variables look this way. The symbols are arbitrary, 
and it is clear from the context that they serve as variables. On the basis of these symbols, 
a new symbol, q, is introduced and given a value. It is argued that it is either prime (and 
then larger than the given primes) or contains a prime divisor r, which must be different 
from the previously given numbers. 

Finally, what is not said but implied is this: whatever concrete value for n we choose, 
whatever values we then choose for p(1), p(2) up to p(n), the argument remains valid. 
It does not depend on the actual values chosen for the variables. So in effect, we are quan-
tifying over language expansions. Also left implicit is the kind of values we may choose 
(natural numbers). Thus, not any kind of language extension will be considered, but only 
an extension that is admitted by the context (whatever that means in concrete detail).

So it appears that at any moment we can extend the language by any number of 
signs. The extension can be definite (q is computed from existing numbers) or indefinite. 
In the latter case we pick a new symbol and give it an “arbitrary” value. This looks like 
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an incarnation of Kit Fine’s arbitrary objects [Fine 1985]; however the values chosen are 
real values. They are not of a different kind. 

Let’s extract the core of this method. Standardly, the meaning of a quantifier is defined 
in terms of substitution of objects for occurrences of variables. 

(∀x)ϕ is true in M if for all a, [a/x]ϕ is true in M. 

Here, [a/x] denotes the substitution of a for all free occurrences of x. However, ϕ is 
a syntactic object, we can’t simply put objects there. To make this well-defined Tarski there-
fore introduced valuations and replaced the clause above by a quantification over valuations: 

(∀x)ϕ is true in M under a given valuation β if for all a ∈ M, ϕ is true in M under [x/a]
β, which is β changed at x to give the value a. 

A formula is thus evaluated in a structure together with a valuation. If the valuation 
is not part of the structure, there is a problem with the meaning of a variable. While the 
notation suggests that the variable stands in for an object, in standard logic it must 
clearly be construed as denoting a set of valuations. [Fine 2007], in another dissenting 
analysis, insists that the meaning of a variable is the set of its values. Any of these inter-
pretations raise their own problems. 

But suppose there are no valuations and no objects to be put in place of x! And that 
what happens instead is that we extend the language by a new symbol, or rather, a new 
sign, like this. 

(∀x)ϕ is true in M if for all a, on extending the language with a sign (c, a), [c/x]ϕ 
is true in M. 

Here, [c/x]ϕ is the result of replacing the free occurrences of x by c. In this interpreta-
tion, variables are metagrammatic symbols. Notice that some details of the extension are 
not specified. They hardly need to be. In actual fact, the language of predicate logic 
never was one language but a spectrum, depending on function and relation symbols plus 
their arities. Thus, textbooks actually declare it a language that extends the bare logical 
language by any functional and relational signature. So the extendability is already built 
in. We know what to do when we are asked to add a constant. Notice that we have to choose 
not only a value but also a name for the constant. But even that is immaterial. 

Now what happens to the symbols once the proof ends? They get removed. In that 
way they can be used anew. Thus we need to consider what happens if the symbols get 
removed. If a name is removed, so is the sign and hence the value that is assigned to the 
variable. The scope of the quantifier is determined by the moment where the symbol that 
it introduces is removed. 

Curiously enough, the analysis presented here is more or less the one suggested by 
Frege (see [Wehmeier 2016] for a discussion) and can also be found in [Hilbert, Bernays 
1934]. For these authors, there were no open formulae. Hence $x.ϕ could not be formed 
from ϕ. Instead, a quantifier was introduced by removing instances of a constant (!) and 
putting variables in its place. The difference between Frege’s approach and the proposal 
made here is that we take the language as basically not specified in advance; and that 
meanings are specified by quantifying over language extensions. This makes the formu-
lation of compositionality awkward, since compositionality is defined within a single 
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language. Wehmeier suggests in [Wehmeier 2016] to quantify over model structures which 
differ from each other in the values of constants. This allows to keep the language constant. 

There is a perfect parallel with functional programming. In functional programming, 
a variable is declared once and its value may not be altered. See XSLT for a perfect il-
lustration of this [Kay 2008]. In this language, there is no distinction between constants 
and variables, everything is called variable (or parameter, which is a variable whose 
value is given from outside). “x := x + 1” is meaningless. Reassignment of values can 
nevertheless be done. Here is an example to get the result of “x := x + 1”. 

1. Create a new variable j with value x + 1. 
2. Remove the name x. 
3. Create a new (!) variable x with value j. 
4. Remove the name j. 

Notice however that one cannot do this in XSLT, because scopes have to be nested. 

9. conclusion
The present paper argues that there never is just one language but rather a whole 

multitude of them, and that the way to handle this multitude is not by creating a unique 
perfect language, or metalanguage, but rather by providing ways to translate between 
them. Languages thus form a category with translations as morphisms.
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