
 

NON-DISTRIBUTIVE IMPLICATIONS AND THEIR APPLICATION IN QUANTUM THEORY 

In classical situations, which deal with the macro events, the uncertainty is described by the means 
of the Kolmogorov probability theory that coincides with classical logic and allows specification 
of conditional probabilities of the poster events with respect to the probabilities of the priory events 
and entailment errors [7]. In contrast, in micro world, which follows the Heisenberg uncertainty 
principle, the laws that govern the uncertain decisions in the framework of classical logic differ 
from the Kolmogorov probabilistic laws [4]. 

The attempts to agree the Kolmogorov probability with classical logic applied to the quantum 
mechanical systems resulted in several interpretations of quantum mechanics, the most of which 
either failed or cannot be considered as meaningful physical rather than pure mathematical 
interpretations. To resolve this inconsistency, in the studies originated by philosophical conjectures 
of Popper and von Mises it was suggested revising the classical concepts of probability in their 
application to quantum world, and in the studies that follows the Heidegger philosophy the revision 
was focused on the logic that is used in quantum mechanical implications [2]. The last approach 
produced a wide range of studies that resulted in different variants of the logic of quantum 
mechanics and related logical calculi [4]. Finally, in their recent work [3] De Raedt, Katsnelson 
and Michielsen suggested a combined approach, following which quantum mechanical 
experiments should be considered as “generators” of certain probabilities, while the logic used in 
quantum mechanical inferences should follow the steady case decision-making led by these 
probabilities. 

However, the mechanism that governs the definition of the probabilities with respect to logical 
operations and, backward, the probability laws underlying the logic of quantum mechanics are still 
unclear. The proposed work is aimed to bridge this gap using recently discovered probability-
based logical aggregators [8-10]; preliminary results obtained in this direction support a usefulness 
of such techniques for achieving the indicated aim. 

Let 𝑎, 𝑏 and 𝑐 be observations of the events 𝐴, 𝐵 and 𝐶, respectively, and denote by ⋏ and ⋎ 
general conjunction and disjunction operators. The formal difference between classical and 
quantum logics is that if the values 𝑎, 𝑏 and 𝑐 are associated with the truth values from the interval 
[0,1], then in the quantum logic the distributive law is broken down and is substituted by the 
inequality 𝑎 ⋏ (𝑏 ⋎ 𝑐) > (𝑎 ⋏ 𝑏) ⋎ (𝑎 ⋏ 𝑐) [2]. In order to satisfy this inequality and to preserve 
the unified consideration of the classical and quantum events, in the proposed approach it is 
assumed that both in macro and micro worlds the truth values 𝑎, 𝑏 and 𝑐 have the same meaning 
and their underlying probabilities are still Kolmogorov, while the indicated inequality is satisfied 
by the appropriate definition of the aggregating operators that extend the operators ⋏ and ⋎. 

The extension of the Boolean logical operators is obtained using the uninorm aggregator 
⊕ఏ: (0,1) × (0,1) → (0,1) with neutral element 𝜃 ∈ (0,1) [10] and the absorbing norm 
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aggregator ⊗ణ: (0,1) × (0,1) → (0,1) with absorbing element 𝜗 ∈ (0,1) [1] both defined using 
the probability distributions as the inverses of their generating functions 𝑢: (0,1) → (−∞,∞) and 
𝑣: (0,1) → (−∞,∞) [6]. Then, the system 𝒜 = 〈(0,1),⊕ఏ,⊗ణ〉 forms a non-distributive algebra, 
in which the distributivity depends on the distributions 𝑢ିଵ and 𝑣ିଵ and their parameters 𝜃 and 𝜗 
and for either for certain classes of distributions it holds true that 𝑎 ⊗ణ (𝑏 ⊕ఏ 𝑐) >

(𝑎 ⊗ణ 𝑏) ⊕ఏ (𝑎 ⊗ణ 𝑐). Finally, since the aggregators ⊕ఏ and ⊗ణ are unambiguously 
correspond to the general conjunction ⋏ and disjunction ⋎ operators, the required inequality is 
obtained. 

The interpretation of the algebra 𝒜 follows the Birkhoff and von Neumann approach [2]. As 
physical quantities, the values 𝑎, 𝑏, 𝑐, … ∈ (0,1), on which act the algebraic operators ⊕ఏ and ⊗ణ, 
are considered as observation results, while these values as logical truth values with the operators 
⊕ఏ and ⊗ణ considered as logical aggregators define the implication rules that govern the 
observer’s conjectures. In addition, it is expected that the probability distributions that generate 
the indicated aggregators will be equivalent to the probability distributions, which define the 
inference probabilities introduced by De Raedt, Katsnelson and Michielsen [3] 

References 

1. Baturshin, I., Kaynak, O., & Rudas, I. (2002). Fussy modeling based on generalized 
conjunction operators. IEEE Transactions on Fuzzy Systems, 10(5), 678-683. 

2. Birkhoff, G., & von Neumann, J. (1936). The logic of quantum mechanics. Annals of 
Mathematics, 37(4), 823-843. 

3. De Raedt, H., Katsnelson, M. I., & Michielsen, K. (2014). Quantum theory as the most 
robust description of reproducible experiments. Annals of Physics, 347, 455-73. 

4. Engesser, K., Gabay, D. M., & Lehmann, D. (Eds.). (2009). Handbook of Quantum Logic 
and Quantum Structures. Quantum Logic. Amsterdam: Elsevier. 

5. Kagan, E., Rybalov, A., & Yager, R. (2014). Multi-valued logic based on probability-
generated aggregators. Proc. IEEE 28th Convention IEEEI (pp. 1-5). Eilat: IEEE. 

6. Kagan, E., Rybalov, A., Siegelmann, H., & Yager, R. (2013). Probability-generated 
aggregators. Int. J. Intelligent Systems, 28(7), 709-727. 

7. Raiffa, H. (1968). Decision Analysis: Introductory Lectures on Choices Under Uncertainty. 
Reading, MA: Addison-Wesley. 

8. Rybalov, A., Kagan, E., & Yager, R. (2012). Parameterized uninorm and absorbing norm 
and their application for logic design. Proc. 27-th IEEE Conv. EEEI. DOI 
10.1109/EEEI.2012.6377125. 

9. Rybalov, A., Kagan, E., Rapoport, A., & Ben-Gal, I. (2014). Fuzzy implementation of 
qubits operators. J. Computer Science and Systems Biology, 7(5), 163-168. 

10. Yager, R. R., & Rybalov, A. (1996). Uninorm aggregation operators. Fuzzy Sets and 
Systems, 80, 111-120. 

СИМВОЛИЧЕСКАЯ ЛОГИКА И ОСНОВАНИЯ МАТЕМАТИКИ

106 Логико-философские штудии. Том 16 (№1–2), 2018


	Symbolic logic and foundations of mathematics  "3353353     Символическая логика и основания математики
	Eugene Kagan  Alexander Rybalov. Non-distributive implications and their application in quantum theory


