Daniil Kozhemiachenko, Lomonosov Moscow State University

SIMULATIONS OF PROPOSITIONAL SINGLE-SUCCEDENT INTUITIONISTIC SEQUENT CALCULI

We consider the following single-succedent sequent calculi for intuitionistic propositional logic.

Definition 1 (ASI). Sequent calculus with additive rules (cf. [1]).

Logical rules.

$$\supset_{l}: \frac{\Gamma \to A \quad B, \Gamma \to \Lambda}{A \supset B, \Gamma \to \Lambda}; \supset_{r}: \frac{\Gamma, A \to B}{\Gamma \to A \supset B};$$

$$\land_{l1}: \frac{A, \Gamma \to \Theta}{A \land B, \Gamma \to \Theta}; \land_{l2}: \frac{B, \Gamma \to \Theta}{A \land B, \Gamma \to \Theta}; \land_{r}: \frac{\Gamma \to A \quad \Gamma \to B}{\Gamma \to A \land B};$$

$$\lor_{l}: \frac{A, \Gamma \to \Theta \quad B, \Gamma \to \Theta}{A \lor B, \Gamma \to \Theta}; \lor_{r1}: \frac{\Gamma \to A}{\Gamma \to A \lor B}; \lor_{r2}: \frac{\Gamma \to B}{\Gamma \to A \lor B};$$

$$\lnot_{l}: \frac{\Gamma \to A}{\lnot A, \Gamma, \to}; \lnot_{r}: \frac{A, \Gamma \to}{\Gamma \to \lnot A}.$$

Cut rule.

$$\mathbf{cut}: \frac{\Gamma \to D \quad D, \Gamma \to \Lambda}{\Gamma \to \Lambda}.$$

Weak structural rules.

$$W_l: \frac{\Gamma \to \Theta}{D, \Gamma \to \Theta}; W_r: \frac{\Gamma \to}{\Gamma \to D}; C_l: \frac{D, D, \Gamma \to \Theta}{D, \Gamma \to \Theta}; E_l: \frac{\Delta, D, C, \Gamma \to \Theta}{\Delta, C, D, \Gamma \to \Theta}.$$

We define two versions of ASI: with proofs written as sequences of sequents (ASI_{dag}) and with proofs written as trees of sequents (ASI_{tree}).

The second calculus is a slight modification of Gentzen's formulation of LJ presented in [2].

Definition 2 (MSI). Sequent calculus with multiplicative rules.

Logical rules.

$$\supset_{l}: \frac{\Gamma \to A \quad B, \Delta \to \Lambda}{A \supset B, \Gamma, \Delta \to \Lambda}; \supset_{r}: \frac{\Gamma, A \to B}{\Gamma \to A \supset B};$$

$$\land_{l1}: \frac{A, \Gamma \to \Theta}{A \land B, \Gamma \to \Theta}; \land_{l2}: \frac{B, \Gamma \to \Theta}{A \land B, \Gamma \to \Theta}; \land_{r}: \frac{\Gamma \to A \quad \Delta \to B}{\Gamma, \Delta \to A \land B};$$

$$\lor_{l}: \frac{A, \Gamma \to \Theta \quad B, \Delta \to \Theta}{A \lor B, \Gamma, \Delta \to \Theta}; \lor_{r1}: \frac{\Gamma \to A}{\Gamma \to A \lor B}; \lor_{r2}: \frac{\Gamma \to B}{\Gamma \to A \lor B};$$

$$\lnot_{l}: \frac{\Gamma \to A}{\lnot A, \Gamma, \to}; \lnot_{r}: \frac{A, \Gamma \to}{\Gamma \to \lnot A}.$$

Cut rule.

$$\mathbf{cut}: \frac{\Gamma \to D \quad D, \Delta \to \Lambda}{\Gamma, \Delta \to \Lambda}.$$

Weak structural rules.

$$W_l: \frac{\Gamma \to \Theta}{D, \Gamma \to \Theta}; W_r: \frac{\Gamma \to}{\Gamma \to D}; C_l: \frac{D, D, \Gamma \to \Theta}{D, \Gamma \to \Theta}; E_l: \frac{\Delta, D, C, \Gamma \to \Theta}{\Delta, C, D, \Gamma \to \Theta}.$$

Again, as with ASI we define MSI_{dag} and MSI_{tree} .

We prove the following propositions.

Theorem 1. Assume, there is a MSI_{dag} -derivation of $\Gamma \to \Delta$ in n steps. Then there is an ASI_{dag} -derivation of $\Gamma \to \Delta$ in $O(n^3)$ steps.

Theorem 2. Assume, there is a MSI_{dag} -derivation of $\Gamma \to \Delta$ in n steps. Then there is an ASI_{dag} -derivation of $\Gamma \to \Delta$ in $O(n^3)$ steps.

Theorem 3. Assume, there is a MSI_{tree} -derivation of $\Gamma \to \Delta$ in n steps. Then there is an ASI_{tree} -derivation of $\Gamma \to \Delta$ in $O(n^3)$ steps.

Theorem 4. Assume, there is a ASI_{dag}-derivation of $\Gamma \to \Delta$ in n steps. Then there is an MSI_{dag}-derivation of $\Gamma \to \Delta$ in $O(n^3)$ steps.

Theorem 5. Assume, there is a ASI_{dag}-derivation of $\Gamma \to \Delta$ in n steps. Then there is an ASI_{tree}-derivation of $\Gamma \to \Delta$ in $O(n^3)$ steps.

Theorem 6. Assume, there is a MSI_{dag} -derivation of $\Gamma \to \Delta$ in n steps. Then there are such $\Gamma' \subseteq \Gamma$ and $\Delta' \subseteq \Delta$ that there is an MSI_{tree} -derivation of $\Gamma' \to \Delta'$ in $O(n^3)$ steps.

References

- [1] U. Egly and S. Schmitt. On intuitionistic proof transformations, their complexity, and application to constructive program synthesis. *Fundamenta Informaticae*, 39(1,2):59–83, 1999.
- [2] G. Gentzen. Untersuchungen über das logische Schließen I. Mathematische Zeitschrift, (39):176–210, 1934.