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Natural deduction rules for Tomova’s natural implications

The class of Tomova’s natural logics is described in [11, 10, 3]. These logics are built over
a propositional language L with the following alphabet: 〈{p1, p2, . . .},¬,→,∧,∨, (, )〉. The
notion of a L-formula is defined in a standard way. The {¬,∧,∨}-fragments of Tomova’s
natural logics are three-valued regular Kleene’s logics. Implications of Tomova’s logics are
natural in the following sense [3, p. 210-211].

Definition 1 (Natural implication). Let V3 be the set {1, 1/2, 0} of truth values and D be the set
of designated values such that either D = {1} or D = {1, 1/2}. Then implication→ is called
natural iff the following conditions hold:

(1) C-extending, i.e. its restrictions to the subset {0, 1} of V3 coincide with classical impli-
cation;

(2) normality in the sense of Łukasiewicz-Tarski, i.e. for all x, y ∈ V3: if x → y ∈ D and
x ∈ D, then y ∈ D (the condition that is sufficient for the verification of modus ponens) [6, p.
134];

(3) consistency, i.e. for all x, y ∈ V3: if x 6 y, then x→ y ∈ D.

As follows from the definition of natural implication, there are 6 implications withD = {1}
and 24 implications with D = {1, 1/2}.

In this report, we consider two three-valued regular (in Kleene’s sence [4]) logics: strong
Kleene’s logic K3 [4] and Asenjo & Priest’s logic of paradox LP [1, 8]. However, note the class
of all three-valued regular logics is bigger (see [5]) and Tomova deals with all of its elements.
K3 and LP are built in L’s {¬,∧,∨}-fragment and their connectives are defined as follows:
v(¬α) = 1 − v(α), v(α ∧ β) = min(v(α), v(β)), and v(α ∨ β) = max(v(α), v(β)), where
α, β are formulas and v is a valuation. In the case of K3, D = {1} while in the case of LP,
D = {1, 1/2}. In L ∈ {K3,LP}, the entailment relation is defined as follows: Γ |=L α iff for
each valuation v, it holds that if v(γ) ∈ D (for each γ ∈ Γ), then v(α) ∈ D, where Γ is a set of
formulas and α is formula.

Natural deduction systems for K3 and LP were presented by Priest [8]. Let R be a set of
the following inference rules:
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As follows from [8], R \ {(EM)} and R \ {(EFQ)}, respectively, are sets of inference
rules for K3 and LP. The notion of an inference is defined in a linear format standardly (see [2]
for a textbook-style definition and [9] for a precise one).
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Let K3→ and LP→, respectively, be K3’s and LP’s extensions by an implication→. Logic
is said to be natural iff it is K3’s or LP’s extension by natural implication. Thus, K3→ and
LP→ are natural logics iff → is natural implication. Besides, let NDK3→ and NDLP→ be
natural deduction systems for K3→ and LP→, respectively. In this report, we will present all
the inference rules for NDK3→ and NDLP→ . Now consider the following ones:

(R1/1)
(α ∨ ¬α) ∧ (β ∨ ¬β)

(α→ β) ∨ ¬(α→ β)
(R1/2)

(α→ β) ∧ ¬(α→ β)

(α ∧ ¬α) ∨ (β ∧ ¬β)

(MP )
α α→ β

β
(R3)

[α] [¬β]
β ¬α
α→ β

Our main result is presented below.

Theorem 2. A logic K3→ is natural iff the rules (R1/1), (MP ), and (R3) are derivable in
NDK3→ . A logic LP→ is natural iff the rules (R1/2), (MP ), and (R3) are derivable in NDLP→ .

The extended version of the report is accepted for publication in Logique et Analyse [7].
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