О полноте инфинитарного гиперсеквенциального исчисления для первопорядковой бесконечнозначной логики Лукасевича

А. С. Герасимов

Санкт-Петербургский политехнический университет Петра Великого alexander.s.gerasimov@ya.ru

Аннотация. В 2010 году Баац (Baaz) и Меткалф (Metcalfe) опубликовали инфинитарное аналитическое гиперсеквенциальное исчисление для первопорядковой бесконечнозначной логики Лукасевича, но привели неверное доказательство полноты этого исчисления. В данном докладе представляется первое верное доказательство полноты этого исчисления. DOI: 10.52119/LPHS.2024.53.50.002.

Ключевые слова: многозначная логика, нечёткая логика, первопорядковая бесконечнозначная логика Лукасевича, инфинитарное исчисление, полнота.

Введение. Логики Лукасевича являются исторически первыми многозначными логиками. Первопорядковая бесконечнозначная логика Лукасевича $\mathsf{L}\forall$ имеет отрезок [0,1] вещественных чисел в качестве множества истинностных значений и, таким образом, относится к нечётким логикам, которые служат для формализации приближённых рассуждений [8,4].

Далее мы будем говорить об исчислениях для логики $\xi \forall$, понимая под таким исчислением любое корректное для $\xi \forall$ исчисление, иными словами, такое исчисление, что все выводимые в нём $\xi \forall$ -формулы общезначимы (т. е. принимают лишь истинностное значение 1). Множество всех общезначимых $\xi \forall$ -формул неперечислимо, если используемая сигнатура достаточно богата [8, Sec. 6.3]. Поэтому для логики $\xi \forall$ неполно любое исчисление с перечислимым множеством теорем и, в частности, любое (так называемое «обычное») исчисление с рекурсивным множеством аксиом и конечным множеством рекурсивных правил вывода. Тем не менеее, в [3], [9] и [8, Sec. 5.4] «обычные» гильбертовские (и потому неаналитические) исчисления для логики $\xi \forall$ были расширены правилом, имеющим бесконечное число посылок, и было доказано, что полученные инфинитарные исчисления полны.

В [2] для логики $\xi \forall$, формулы которой строятся с помощью нулевой истинностной константы $\bar{0}$, бинарной связки «импликация Лукасевича» \to и кванторов \forall и \exists , предложены «обычное» аналитическое гиперсеквенциальное исчисление $\mathsf{G} \xi \forall$ и инфинитарное исчисление $\mathsf{G} \xi \forall + (\infty)$, расширяющее $\mathsf{G} \xi \forall$ посредством правила (∞) с бесконечным числом секвенций вида $(\bar{0} \Rightarrow [A]^k)$ в качестве посылок:

$$ar{0}\Rightarrow [A]^k$$
 для всех положительных целых чисел k $(\infty),$

где A — $\xi \forall$ -формула, и $[A]^k$ — мультимножество, состоящее из k копий A. Также в [2, Sec. 7] сформулирована следующая теорема о полноте исчисления $G\xi \forall +(\infty)$.

Теорема 1. Пусть F — $\mathsf{t} \forall$ -предложение. Тогда F общезначимо, если и только если F выводимо в $\mathsf{G} \mathsf{t} \forall + (\infty)$.

Однако мы обнаружили, что приведённое в [2, Sec. 7] доказательство этой теоремы существенно неверно; и автор статьи [2] Дж. Меткалф согласился с нами. В данном докладе мы более детально, чем в тезисах [7], представляем первое верное доказательство теоремы 1.

Схема доказательства теоремы 1. В [5, Sec. 7] мы установили теорему 1 лишь для пренексных, или предварённых, $\xi \lor$ -предложений, а именно установили следующую теорему. Теорема 2 [5, Sec. 7]. Пусть F — пренексное $\xi \lor$ -предложение. Тогда:

- (a) F общезначимо, если и только если для всех положительных целых чисел k секвенция $(\bar{0}\Rightarrow [F]^k)$ выводима в $\mathsf{G}\mathsf{L}\forall$;
- (b) F общезначимо, если и только если F выводимо в $\mathsf{GL}\forall +(\infty)$.

(Утверждение (b) есть следствие утверждения (a).)

Теперь мы доказываем теорему 2 для произвольного $\xi \forall$ -предложения F и тем самым доказываем теорему 1; здесь существенным затруднением является то, что известное правило сечения не допустимо в $G \xi \forall$, как показано в [2].

Мы определяем для логики $\xi \forall$ новое исчисление $G \xi \forall_c$, которое лучше, чем $G \xi \forall$, подходит для перестановки смежных применений правил вывода. Исчисление $G \xi \forall_c$ получается из введённого в [1] исчисления $G^1 \xi \forall$ удалением одного вхождения главной секвенции из каждой посылки каждого правила вывода и добавлением правила внешнего сокращения (ec) из $G \xi \forall$. Мы устанавливаем, что исчисление $G \xi \forall_c$ равнообъёмно исчислению $G^1 \xi \forall$, которое, как показано в [6, Corollary 5.12], является консервативным расширением исчисления $G \xi \forall$. Таким образом, справедлива

Теорема 3. Исчисление $\mathsf{G} \mathsf{L} \forall_\mathsf{c}$ — консервативное расширение исчисления $\mathsf{G} \mathsf{L} \forall_\mathsf{c}$

Чтобы доказать полноту исчислений $\mathsf{G} \mathsf{L} \forall + (\infty)$ и $\mathsf{G} \mathsf{L} \forall_\mathsf{c} + (\infty)$, нам остаётся показать, что для общезначимости произвольного $\mathsf{L} \forall -$ предложения F необходимо и достаточно выводимости секвенции $(\bar{0} \Rightarrow [F]^k)$ в $\mathsf{G} \mathsf{L} \forall_\mathsf{c}$ для всех положительных целых чисел k. Здесь достаточность легко устанавливается с помощью корректности исчисления $\mathsf{G} \mathsf{L} \forall_\mathsf{c}$. А (нетривиальная) необходимость сводится к случаю, когда F пренексное, следующим образом.

Имея общезначимое $\xi \forall$ -предложение F и положительное целое число k, мы преобразуем F (лишь посредством переименования связанных переменных и применения законов пронесения кванторов) в пренексную форму F_p , которая оказывается общезначимым $\xi \forall$ -предложением. В силу теорем 2 и 3 секвенция $(\bar{0} \Rightarrow [F_p]^k)$ выводима в $G\xi \forall_c$. Отсюда ввиду приведённой ниже леммы 4 вытекает выводимость секвенции $(\bar{0} \Rightarrow [F]^k)$ в $G\xi \forall_c$, что и требовалось. Лемма 4 (о депренексификации). Пусть:

- (a) \mathcal{H} гипересеквенция, выводимая в $\mathsf{G}\mathsf{k}\forall_{\mathsf{c}};$
- (b) Q вхождение \forall -формулы $\exists x(A \to B)$ в \mathcal{H} ;
- (c) x не входит свободно \mathcal{B} ;
- (d) гиперсеквенция \mathcal{H}' получается из \mathcal{H} заменой \mathcal{Q} на $(\forall x \mathcal{A} \to \mathcal{B}).$

Тогда \mathcal{H}' выводима в $\mathsf{G}\mathsf{Ł}\forall_{\mathsf{c}}$.

Также справедливы 3 аналогичных утверждения для 3 других законов пронесения кванторов (выше в данной лемме приведено утверждение для закона, выражающего семантическую эквивалентность $\exists x(\mathcal{A} \to \mathcal{B})$ и $(\forall x\mathcal{A} \to \mathcal{B})$ при условии (c)).

Для доказательства леммы 4 мы исследуем перестановки нескольких смежных применений правил исчисления $G \& \forall_c$ и, используя такие перестановки и некоторые «хирургические» операции над $G \& \forall_c$ -выводами, преобразуем любой данный $G \& \forall_c$ -вывод для \mathcal{H} в $G \& \forall_c$ -вывод для \mathcal{H}' (в действительности эта часть нашего доказательства довольно длинна).

Заключение. По изложенной выше схеме мы доказали, что инфинитарные аналитические гиперсеквенциальные исчисления $\mathsf{G} \mathsf{L} \forall_\mathsf{c} + (\infty)$ и $\mathsf{G} \mathsf{L} \forall + (\infty)$ для логики $\mathsf{L} \forall$ полны. Полезным следствием нашего доказательства (а именно леммы 4 о депренексификации) является то, что

для любой $\mathsf{L} \forall$ -формулы A и любой её пренексной формы A_p , определяемой в чисто синтаксических терминах, из выводимости A_p в $\mathsf{G} \mathsf{L} \forall_\mathsf{c}$ или $\mathsf{G} \mathsf{L} \forall$ вытекает выводимость A в $\mathsf{G} \mathsf{L} \forall_\mathsf{c}$ и $\mathsf{G} \mathsf{L} \forall$.

Литература

- 1. Герасимов А. С. Бесконечнозначная логика Лукасевича первого порядка: гиперсеквенциальные исчисления без структурных правил и поиск вывода предварённых предложений. *Математические труды*, 2017, т. 20, № 2, с. 3–34.
- 2. Baaz M., Metcalfe G. Herbrand's theorem, skolemization and proof systems for first-order Łukasiewicz logic. *Journal of Logic and Computation* 20.1, 2010, p. 35–54.
- 3. Belluce L. P., Chang C. C. A weak completeness theorem for infinite valued first-order logic. *Journal of Symbolic Logic* 28.1, 1963, p. 43–50.
- 4. Cintula P., Hájek P., Noguera C., eds. *Handbook of Mathematical Fuzzy Logic*. Vol. 1 and 2. London: College Publications, 2011.
- 5. Gerasimov A. S. Repetition-free and infinitary analytic calculi for first-order rational Pavelka logic. *Siberian Electronic Mathematical Reports* 17, 2020, p. 1869–1899.
- 6. Gerasimov A. S. Comparing calculi for first-order infinite-valued Łukasiewicz logic and first-order rational Pavelka logic. *Logic and Logical Philosophy* 32.2, 2022, p. 269–318.
- 7. Gerasimov A. S. The completeness of an infinitary analytic calculus for first-order infinite-valued Łukasiewicz logic. *International Conference "Mal'tsev Meeting 2023": Collection of Abstracts.* Novosibirsk, 2023, p. 114.
- 8. Hájek P. Metamathematics of Fuzzy Logic. Dordrecht: Kluwer Academic Publishers, 1998.
- Hay L. S. Axiomatization of the infinite-valued predicate calculus. *Journal of Symbolic Logic* 28.1, 1963, p. 77–86.