The Internalist Justificatory Function of Reductio ad Absurdum

Manuel Arnulfo Cañas Muñoz

Аннотация


In the present essay it is discussed the main features of reductio ad absurdum as a source of justification. These properties areconsequences of the employment of contradictions as a reason for proving if a statement is true. Although a valid deductive argument can build an internalistic justification, I would suggest that the justification obtained by reductio ad absurdum cannot be externalist. This is because contradictions as reasons can be considered internal states from different definitions.

Полный текст:

PDF

Литература


Heath 1921 — Heath T. A History of Greek Mathematics. Oxford University Press, 1921.

Hine 2019 — Hine G. Proof by Contradiction: Teaching and learning considerations in the secondary mathematics classroom // Australian Mathematics Education Journal. 2019. Vol. 1, no. 3. P. 24–28.

Jourdan, Yevdokimov 2016 — Jourdan N., Yevdokimov O. On the Analysis of Indirect proofs: Contradiction and Contraposition // Australian Senior Mathematics Journal. 2016. Vol. 30, no. 1. P. 55–64.

Leron 1985 — Leron U. A Direct Approach to Indirect Proofs // Educational Studies in Mathematics. 1985. Vol. 16. P. 321–325.

Polya 1973 — Polya U. How to Solve it. A new aspect of Mathematical Method. Princeton University Press, 1973.




DOI: https://doi.org/10.52119/LPHS.2021.92.99.006

Ссылки

  • На текущий момент ссылки отсутствуют.




(c) 2021 Manuel Arnulfo Cañas Muñoz

Лицензия Creative Commons
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.