In defense of the self-referencing quantifier Sx. Approximation of self-referential sentences by dynamic systems
Аннотация
Arguments in defense of introducing the self-referencing quantifier Sx and its approximation on dynamical systems are consistentlypresented. The case of classical logic is described in detail. Generated 3-truth tables that match Priest’s tables (Priest 1979). In the process of constructing 4-truth tables, two more truth values were revealed that did not coincide with the original ones. Therefore, the closed tables turned out to be 6-digit.
Полный текст:
PDFЛитература
Emily 1975 — Emily M. Pierce’s Paradoxical Solution to the Liar’s Paradox // NDJFL. 1975. Vol. XII, no. 3. P. 369–374.
Feferman 1984 — Feferman S. Toward Useful Type-Free Theories I // JSL. 1984. Vol. 49. P. 75–111.
Johnstone 1981 — Johnstone A. Self-reference, the Double Life and Gödel // Logique at Analyse. 1981. Vol. 24. P. 35–47.
Priest 1979 — Priest G. The Logic of Paradox // JPL. 1979. Vol. 8. P. 219–241.
Sharkovskii 1989 — Sharkovskii A. N., Kolyada S. F., Sivak A. G., Fedorenko V. V. Dynamics of one-dimensional mappings. Kiev: Naukova dumka, 1989.
DOI: https://doi.org/10.52119/LPHS.2021.49.50.014
Ссылки
- На текущий момент ссылки отсутствуют.
(c) 2021 Vladimir Stepanov
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.